Строительство с применением аддитивных технологий
Эту статью предлагается удалить. |
Строительство с применением аддитивных технологий — существующее направление в развитии строительных технологий, относится к разным вариантам воспроизводства компонентов построек, которые используют 3D-печать (англ. 3D Concrete) как основной метод для изготовления элементов зданий или строительных компонентов. Альтернативные термины для этого процесса включают «аддитивное строительство»[1][2], «печать домов» и «трехмерная печать домов»[3]. Вариант «3D-бетон» относится к технологиям экструзии (жидкого или струйно распыляемого) бетона, в то время когда «автономная роботизированная строительная система» (напр. роботизированная нашина для крадки кирпича) (en:Autonomous Robotic Construction System-ARCS), крупномассштабное аддитивное производство (en: large-scale additive manufacturing-LSAM), 3D печать пресс форм для бетона, или применение технологии для мелкосерийного производства неархитектурных компонентов зданий относятся к другим подгруппам[4].
В полнометражном строительном масштабе основными методами 3D-печати являются экструзия (таких матетиалов как бетон/цемент, воск, пена, полимеры), соединение порошкообразных материалов (полимерное соединение, реактивное соединение, спекание) и аддитивная сварка если речь идет о металических компонентах.
На сегодняшний день был продемонстрирован ряд различных подходов, включающих изготовление зданий и строительных компонентов на месте или на домостроительном предприятии с использованием промышленных роботов, козловых кранов и специализированных автономных транспортных средств работающих в беспилотном режиме. Демонстрации строительных технологий 3D-печати включали изготовление жилья, строительных компонентов (облицовки и структурных панелей и колонн), мостов и гражданской инфраструктуры, искусственных рифов и скульптур.
История
[править | править код]Автоматизация строительных процессов является областью исследований в области архитектуры и гражданского строительства с 20 века. Самые ранние подходы были сосредоточены на автоматизации кладки. В 1904 году патент на машину для укладки кирпича был выдан Джону Томасу в США[5] Работизированная кирпичная кладка была разработана и исследована в 1950-х годах, а связанная с этим разработка технологий вокруг автоматизированного строительства началась в 1960-х годах, из перекачивающегося бетона и изоцианатной пены[6].[7]
В конце 1930-х годов, Уильям Уршель (William Urschel) демонстрирует свою машину для строительства стен. Согласно его патентной заявке 1944 года, это изобретение представляет собой машину, способную формовать затвердевающий материал в форму полосы и наносить его в виде слоя при формировании стены. Новое расположение трамбовочных элементов прижимало материал к верхнему торцу стены. Вибрационный питатель подавал материал. Такую машину можно было использовать для укладки усушенной мелкозернистой бетонной смеси, аналогичной той, что применяется при формовании шлакоблоков. Сохранившийся видео ролик[8] демонстрирует постройку куполообразного бомбоубежища[9][10][11] . Машина являлась первым прототипом современных технологий 3Д-печати. Разработка автоматизированного изготовления целых зданий с использованием методов скользящей формовки и роботизированной сборки компонентов, подобных 3D-печати, была начата в Японии для устранения опасностей строительства высотных зданий в 1980-х и 1990-х годах компаниями Shimizu и Hitachi. Многие из этих ранних подходов к автоматизации на месте потерпели неудачу из-за «пузырь»-строительства и неспособности проектировщиков таких зданий реагировать на новую архитектуру и проблем подготовки и подачи материалов на объект в застроенных районах.
В 2003 году Руперт Соар привлек финансирование и сформировал конструкторскую группу свободной формы в Университете Лафборо , Великобритания, чтобы исследовать потенциал расширения существующих технологий 3D-печати для строительных приложений. В 2005 году группа обеспечила финансирование для строительства крупного 3D-печатного оборудования для масштабного строительства, использующего готовые компоненты (бетононасос, распыляемый бетон, модифицированный козловой кран), чтобы исследовать, насколько сложными могут быть такие компоненты и реалистично отвечать требованиям строительства.
В 2005 году Энрико Дини, Италия, запатентовал технологию D-Shape, используя массово масштабную технику порошкового нанесения/склейки на площади примерно 6 м x 6 м x 3 метров[12] . Несмотря на то, что эта техника изначально была разработана с системой склеивания эпоксидной смолой, позже адаптирована для использования неорганических связующих агентов[13]. Эту технологию коммерчески использовали для ряда проектов в строительстве и других секторах, в том числе для искусственных рифов[14] .
В 2008 году 3D бетонная печать началась в Университете Лафборо, Великобритания, во главе с Ричардом Басуэллом и его коллегами, чтобы расширить предварительные исследования группы и обратить внимание на коммерческие приложения, переходя от экперементальной технологии к созданию робототехники работающей в промышленном маштабе[15].. В 2014 году начался прорыв в области строительства зданий с использованием 3D-печати бетоном.
В течение 2014 года шанхайская компания WinSun анонсировала сначала строительство десяти 3D-печатных домов, возведённых за 24 часа, а после напечатала пятиэтажный дом и особняк[16].
В Университете Южной Калифорнии прошли первые испытания гигантского 3D-принтера, который способен напечатать дом с общей площадью 250 м² за сутки.[17]
В октябре 2015 года в рамках выставки «Станкостроение» (Крокус-Экспо) были представлены российские разработки и промышленные образцы строительных 3D-принтеров[18].
В мае 2016 года состоялось открытие первого в мире здания, напечатанного на 3D-принтере — офиса Dubai Future Foundation[19].
В феврале 2017 года первый дом, полностью напечатанный на 3D-принтере, создали в России, в подмосковном Ступине. Он был целиком напечатан на стройплощадке, а не собран из деталей, созданных в заводских условиях[20].
Американская компания Apis Cor сумела построить дом с помощью 3D-принтера. Площадь — 38 м² и построен дом всего за сутки. По словам компании, материал, использованный при строительстве, сможет простоять минимум 175 лет. Дом оснащён всеми коммуникациями, в нём есть коридор, гостиная, ванная комната и компактная кухня. Цена такого дома составила $10 134 доллара США. Этот принтер способен построить здание любого размера и формы. Единственным ограничением являются законы физики, сообщают представители компании.[21]
В швейцарской коммуне Риом-Парсонц установлена инсталляция из 9 индивидуально спроектированных бетонных колонн высотой 2,7 м каждая, распечатанных на строительном фаббере[22] (изготовлены без опалубки в полную высоту за 2,5 часа на основе 3D-печати).[23]
Автоматизация в строительстве приносит огромную экономию средств. Компания, которая строит экологически чистые высококачественные дома с помощью 3D-печати и автоматизации, Mighty Buildings, заявляет, что компьютеризация 80 % процесса печати означает, что фирме требуется только 5 % от той рабочей силы, которая была бы задействована ранее. Это также удваивает темпы производства.
В селе Айша Зеленодольского района Татарстана впервые в России началось строительство комплекса жилых домов при помощи 3D-печати.[24]
См. также
[править | править код]Примечания
[править | править код]- ↑ Labonnote, Nathalie; Rønnquist, Anders; Manum, Bendik; Rüther, Petra (December 2016). "Additive construction: State-of-the-art, challenges and opportunities". Automation in Construction. 72: 347—366. doi:10.1016/j.autcon.2016.08.026.
- ↑ Kreiger, Eric L.; Kreiger, Megan A.; Case, Michael P. (August 2019). "Development of the construction processes for reinforced additively constructed concrete". Additive Manufacturing. 28: 39—49. doi:10.1016/j.addma.2019.02.015. S2CID 155452051.
- ↑ 3D-печать домов – технология, плюсы и минусы . Дата обращения: 30 августа 2023. Архивировано 30 августа 2023 года.
- ↑ Sisson, Patrick Can this startup 3D-print a home in 30 hours? (англ.). Curbed (8 января 2019). Дата обращения: 23 августа 2023. Архивировано 2 июня 2020 года.
- ↑ патент США 772191 , Томас, Джон, «Машина для укладки кирпича», опубликован 11 октября 1904 г.Thomas, John, "Brick-laying machine", US patent 772191, published 1904-10-11
- ↑ Papanek. Design for the Real World. — 1971. — ISBN 978-0897331531.
- ↑ Architectural Design. Versatility and Vicissitude. — 2008. — ISBN 9780470516874.
- ↑ Concrete Without Forms - YouTube . Дата обращения: 30 августа 2023. Архивировано 30 августа 2023 года.
- ↑ William Urschel Demonstrates his Wall Building Machine – Natural Building Blog . Дата обращения: 30 августа 2023. Архивировано 30 августа 2023 года.
- ↑ Harmon, John (1947-09-30). "New Builder Speeds Work (page one)". The Vidette-Messenger. Архивировано 6 января 2017. Дата обращения: 5 января 2017.
- ↑ Harmon, John (1947-09-30). "New Builder Speeds Work (page two)". The Vidette-Messenger. Архивировано 6 января 2017. Дата обращения: 5 января 2017.
- ↑ Patent by Dini et al., «Method and Device for Building Automatically Conglomerate Structures. Patent number US20080148683 A1» Архивная копия от 28 сентября 2022 на Wayback Machine web cited 2016-07-18
- ↑ J.B.Gardiner PhD thesis [1] Архивировано 11 марта 2019 года. "Exploring the Emerging Design Territory of Construction 3D Printing, 2011 (p89) web cited 2016-07-18
- ↑ J.B.Gardiner PhD thesis [2] Архивировано 11 марта 2019 года. «Exploring the Emerging Design Territory of Construction 3D Printing, 2011» (p337) web cited 2016-07-18
- ↑ J.B.Gardiner PhD thesis [3] Архивировано 11 марта 2019 года. "Exploring the Emerging Design Territory of Construction 3D Printing, 2011 (p81) web cited 2016-07-18
- ↑ Шанхайская WinSun напечатала пятиэтажный дом и особняк . Дата обращения: 18 декабря 2015. Архивировано 8 ноября 2020 года.
- ↑ Гигантский 3D-принтер, способен напечатать дом . Дата обращения: 18 декабря 2015. Архивировано из оригинала 22 декабря 2015 года.
- ↑ Аддитивные строительные технологии . Архивировано из оригинала 22 декабря 2015 года.
- ↑ Dubai says opens world's first functioning 3D-printed office (англ.). Рейтер (24 мая 2016). Дата обращения: 22 декабря 2016. Архивировано 21 декабря 2016 года.
- ↑ В подмосковном Ступино распечатали коттедж на 3D принтере - Novostroy.ru . www.novostroy.ru. Дата обращения: 22 февраля 2017. Архивировано 23 февраля 2017 года.
- ↑ "Создан 3D принтер способный печатать дома". theUK.one. Архивировано 18 марта 2017. Дата обращения: 17 марта 2017.[неавторитетный источник]
- ↑ Слюсар, В.И. Фабрика в каждый дом. Вокруг света. – № 1 (2808). - Январь, 2008. C. 96 - 102. (2008). Дата обращения: 18 апреля 2020. Архивировано 24 октября 2018 года.
- ↑ Крохмаль А. С., Казакова Н. Ю. Применение 3D-печати в формировании образа современных городских пространств.// Вестник МГХПА «Декоративное искусство и предметно-пространственная среда». — № 1 — 2, 2020. — С. 260—267. [4] (недоступная ссылка)
- ↑ Коммерсантъ 21.12.2022 Владимир Тесленко Физико-химические проблемы 3D-печати в строительстве Архивная копия от 21 апреля 2023 на Wayback Machine
Ссылки
[править | править код]- 3-D принтер заменит целую строительную компанию
- D-Shape France (11 октября 2006). Дата обращения: 4 февраля 2013. Архивировано 13 февраля 2013 года.
- ERIC MANKIN. CATERPILLAR INC. FUNDS VITERBI 'PRINT-A-HOUSE' CONSTRUCTION TECHNOLOGY. University of Southern California — Viterbi School of Engineering. August 28, 2008.
- Colloquium with Behrokh Khoshnevis
Это заготовка статьи. Помогите Википедии, дополнив её. |